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Abstract. We introduce and sNdy a model which admits a complex landscape without 
containing quenched disorder. Continuing our previous investigation we introduce a disordered 
model which allows us to reconstruct ail the main leaturcs of the originnl phase diagram. 
including a low-T spin-glass phase and a complex dynamical behaviour. 

1. Introduction 

In our companion paper [l] (which in the following we will denote as I) we have started 
(at the same time as Bouchaud and Mezard in [2]) a study of the role of replica field theory 
when applied to the study of systems which do not contain quenched disorder (for further 
connected work which helps clarify this issue see [3,41. 

The immediate starting point which prompted our investigation (I)  was a model of binary 
sequences with low autocorrelation, as originally discussed by Golay and Bernasconi [5 ,6 ] .  
The model was for us a prototype of a system which does not contain quenched random 
disorder, but has an interesting spin-glass-like low-T structure (for general discussions 
about disordered systems see [7-91). We have shown that replica theory allows us to gather 
information about the full phase diagram of the theory, excluding only the very low-T 
behaviour, which is determined by various factors, including the cardinality of the number 
of spins of the system, N .  Indeed we have shown in I that replica theory can allow a study 
of the full deterministic model. and does not have to be limited to an approximate form. 

Apart from such a direct application, we have discussed in I a more general valence 
of such an approach. The ability of investigating deterministic systems with a complex 
landscape is an important bonus. We also stress that we are still lacking a comprehensive 
description of the glass state, and that such an approach seems a good candidate for this 
task. 

In the following we will discuss a new class of models without quenched disorder. They 
derive quite directly from the ones studied in I ,  by noticing the peculiar role the Fourier 
transform is playing (we will discuss this point in some detail in section 2). We will find 
that these models behave in a way which appears to be relevant to the description of the 
glass state. 

0305~70l94~3?64712~19.50 @ 1994 IOP Publishing Ltd 7647 
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We will define the first model (the sine model) by the Hamiltonian 

where 

and the spin variables 0; take the values kl. We define the analogous cosine model by the 
Hamiltonian Hc 

where 

C,(U.) =-cos - ’ - f i  (4) 

Let us anticipate a discussion of the phase diagram of the model. We will see that a very 
important role is played by the case where (2N 4- 1) is prime (and N is odd for the sine 
model and even for the cosine model). In this case the thermodynamical limit of the partition 
function is anomalous. Indeed, we will show that from the thermodynamical point of view 
for prime values of (2N + 1) our models undergo a first-order transition at a temperature 
Tc. We find such a crystallization transition only in  the case of prime (2N 4- I ) .  At TC 
the system goes from a disordered state to a highly ordered one. The specific heat in the 
low-temperature crystalline state is extremely small. 

The system, however, has a metastable phase whose internal energy is regular at T , .  
When we start from high T with local Monte Carlo dynamics. and we decrease T with 
some kind of annealing procedure, we pass through TC without any noticeable change in 
the thermodynamical quantities. 

At a lower temperature Tc, within the metastable phase, there is a transition to a 
glassy phase (a second-order phase transition). This transition exists for generic values 
of N.  In the glassy phase the system may exist in many different equilibrium metastable 
states. Here there are many states which survive with finite probability in the infinite- 
volume limit (in other words replica symmetry is broken). In this phase the system freezes 
and thermodynamic fluctuations (for instance of the energy and of the magnetization) are 
very small. The behaviour of the system at the glass transition can be understood in the 
framework of replica theory. It is remarkable that the glass trans,ition temperature Tc; is the 
temperature where the entropy in the metastable phase becomes nearly equal to the entropy 
in the glassy phase (i.e. very close to zero). 

We stress again that the crystalline phase only exists for (2N + 1) prime, N odd for the 
sine model and even for the cosine model. On the other hand the behaviour of the system 
in the high-temperature phase and in the metastable phase is generic, and does not depend 
on the cardinality of (2N + I), 

In section 2 we will briefly describe the genesis of this model. after our paper I .  We will 
also discuss the low-T phase of the IOW autocorrelation model, mainly by using number 
theory. We will again be quite sketchy, inviting the interested reader to consult 1 for a more 
detailed discussion. In section 3 we will define a model containing quenched disorder, 
which we will eventually dissect by replica theory, and show to give a fair description 
of many features of our deterministic models. We will eventually show that the random 
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model and the deterministic one do basically coincide, apart for minor details such as the 
non-generic existence of the crystalline phase in the deterministic models. 

In section 4 we describe our replica computation. In section 5 we analyse the saddle- 
point equations. We describe the replica-symmetric and the one-step replica-broken solution. 
In section 6 we discuss the so-called marginality condition. In section 7 we illustrate our 
numerical simulations of the models with quenched random disorder, and in section 8 the 
numerical simulations of the deterministic models. In section 9 we discuss the mean-field 
equations for the deterministic models. In section 10 we draw our conclusions. In the final 
appendix we present the technical details of a computation concerning the marginal stability. 

2. The genesis of our models 

In order to introduce the models we have defined in the previous section, and which we 
will study in the following, let us recall some basic definitions from I ,  and repeat briefly 
the reasoning which leads to the exhibition of the exact ground state of the model for some 
particular values of the number of spins. The reader in need of further details should consult 
I and [IO]. 

The low autocorrelation model is based on sequences of length p of spin variables 
0; = i l ,  with x = 1. p ,  and on the Hamiltonian 

"-1 

where the C, are the correlations at distance k ,  defined as 

where we are taking periodic boundary conditions (this is, in the terminology of I ,  the 
periodic model), i.e. the indices are always summed modulo p. In this way the indices 
which address the U variables always belong, as they should, to the interval [ I ,  p], It is 
useful to rewrite the Hamiltonian as 

where the Fourier transform is defined as 

and i is the imaginary unit. The thermodynamics of the model can be reconstructed thanks 
to the partition function at inverse temperature 0 1 / T  in the volume p 

~ ~ ( 0 )  = Ce+f'f') . (9) 
101 

An interesting way to look at the Hamiltonian (5 )  is to consider it as a particular form 
of a fully frustrated 4-spin interaction. Here only the 4-spin terms, which are contained in 
a square of two-point correlation functions, appear. This point of view has been useful in I 
to show that replica theory can be a reasonable tool for investigating deterministic models. 
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It is remarkable that for prime values of p ,  such that p = 4n+ 3, it is possible to exhibit 
in an explicit way one ground state of the system. Let us construct such a ground-state 
configuration. Following Legendre [IO] we set up = 0 and 

I - J  - .h(P-l)modp. (10) 

In this way ui is +1 or - I ,  if j < p ,  Indeed, a theorem by Fermat [lo] tells us that if j 
is not a multiple of p,  j c p - ’ )  = 1, mod(p) and therefore j i ( p - ’ )  = f l .  

We will evaluate the energy of this sequence and only at the end will we impose that 
up = f l  on the last site p. It is well known that for this sequence all the correlations 
Ck are equal to -1 [lo]. It is also remarkable (and the crux of this paper) that on such a 
sequence the Fourier transform is given by 

(11) 
where, according to Gauss [IO], C(p)  = 1 for p = 4n + 1 and G(p)  = -i, for p = 4n + 3. 
This Gauss theorem makes it easy to verify that the configurations we have exhibited have 
energy 1 (the lowest possible energy for odd values of p ) .  Now we change the last spin 
to kl ,  It is easy to verify that after doing that the energy of configurations with p of the 
form 4n + 3 stays unchanged at 1, while for p = 4n + 1 the energy grows to 5. It is clear 
now that for p prime of the form 4n + 3 we have exhibited a true ground state of the low 
autocorrelation model. 

By using Gauss’ theorem for Fourier transforms of Legendre sequences we are now 
able to define a simple model with 2-spin interaction which has the same ground state as 
the 4-spin interaction low autocorrelation model. We are ignoring here the presence of the 
spin with value zero. The new Hamiltonian has the form 

K4 = c (PI Uk 

H = lG(p)o; - B(X)l* (12) 
x 

We can further simplify the model by noticing that the sequence of the U in the ground 
state is symmetric or antisymmetric around the point i ( p  - I), depending on the value of 
G ( p ) .  This allows us to define two new models with half the number of degrees of freedom 
which continue to admit (for selected p values) the ground state we have written; tw’o such 
models are the sine and the cosine model we have defined in our introduction. 

Hopefully we have to some extent clarified the nature of our two models. Now we can 
proceed to study them. 

3. The disordered model 

At this point it is natural to introduce a model which contains quenched disorder. Our 
companion paper (I) justifies this approach, in detail. By studying a suitable disordered 
model we try to understand how general a very specific 2-spin interaction is, like, for 
example, the sine one (1). Indeed we will find they have much in common, and that the 
random model allows u s  to reconstruct exactly the most part of the phase diagram. As 
before we define the Hamiltonian (here ‘0’ stands for orthogonal) 

where now 
deterministic model will be obtained by using a rescaled Hamiltonian 

is a generic orthogonal symmetric matrix. The same behaviour of the 

Ho 2 N  - 2Ho. ( 14) 
- 
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The form we have just written is important since in the case of the original sine and 
cosine models the Hamiltonians defined after (12) can also be written in the form 2 N  - 
2 c , , ,  Mi,ku:uk, by neglecting terms which are irrelevant in the N -+ 00 thermodynamic 
limit. 

The first element for the comparison of the two classes of models, the sine and cosine 
versus the random one, can be obtained by noticing general features of the high-temperature 
expansions of the models. For both class of models the couplingst are of order N-lIZ.  The 
diagrams which contribute to the infinite-volume limit have the same topology for the two 
classes of models, and they only depend on quantities like the trace of the couplings to 
positive powers, which have been built to be equal in the two classes of models. 

The reasoning of the former paragraph proves that the sine and cosine models defined 
from (1) and (3), and the model with quenched disorder defined from (14). have the same 
high-temperature expansion. On the other hand we have exhibited a ground state of the 
deterministic system which exists for prime values of ( 2 N  + 1). Such a construction 
obviously does not apply to the disordered models. This implies that the static properties of 
the two classes of models (for prime values of ( 2 N  t I ) )  cannot coincide all the way down 
to T = 0. There is a crystallization transition only in the deterministic models, thanks to 
the very peculiar cardinality properties of N .  

We will give evidence that the random and the deterministic model do coincide at all 
temperatures in the metastable phase. This is the case for generic values of N ,  since, 
as we have already stressed, the cardinality of 2N + 1 is irrelevant for the behaviour of 
the deterministic model in the metastable phase. A similar pattern could hold for the low 
autocorrelation model, but in the present case of the 2-spin interaction the analysis is far 
simpler, and we are able to carry it through all the way. 

4. The replica approach 

By using replica-theory techniques [7,8] we will now solve the model with quenched 
disorder defined by the Hamiltonian (13). As usual we define the free energy of n replicas 
as 

where with the bar we denote the average over the quenched disorder and 

We have to average over the quenched disorder. To this end we have to compute 

where the integral runs over orthogonal symmetric matrices, and 

We will now show that we can solve a more general problem considering a symmetric 
coupling matrix with some quite general pre-assigned eigenvalue distribution. We will 

t This is not me for all soluble spin-glass models. In the dilute models tbe average coordination number 2 
remains finite and the couplings may be n qumtiry of order I .  with a probability of order z / N .  
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derive such a more general form. We will eventually obtain the relevant result specializing 
this general form to orthogonal symmetric matrices. 

A generic real symmetric matrix 0 can be decomposed ast 

0 = VDV' (19) 

where D is a diagonal matrix which controls the spectrum of 0, and V is the orthogonal 
matrix which diagonalizes 0. By using this decomposition we have to compute 

where D is a diagonal matrix, dV is the Haar invariant measure over the orthogonal group, 
and the matrix Q is defined in (18). We can use the results derived in [I21 for unitary 
matrices and adapt them to the orthogonal case. So, let us assume for a while that we are 
integrating over unitary matrices V. Using the fact that Q hasfinite rank we find that 

The value of G is given in [12] (when, as we have already said, the integral is over the 
unitary matrices). Following [12] let us define the generating function for the traces of D 
as 

l m  
@ D ( j ) =  - x j k T r D k  

k=O 

in the case where d E TI D = 0. If d # 0 we define the generating functional as 

I *  
@po(j) - - x j k T r ( D - d ) k  

k=O 

which allows a straightforward generalization of the computation, by only adding an 
additional contribution to the free energy. We define the function z D  as 

z d j )  E j@di) (W 

@ D ( z )  = @ ( j ~ ( z ) )  (25) 

and finally we define the function @.D(z) by 

where j ~ ( z )  is obtained by inverting (24). AU said, I121 tells us that G is given by 

In the orthogonal symmetric case 0' = 1 and the eigenvalues of D can take the values 
& I .  As far as our problem is concerned we are interested in the case where half of the 
eigenvalues take the value f l  and half the value -1. Here we will discuss a more general 
case, where a fraction U of the eigenvalues is +I and a fraction 1 - U is -1. 

It is interesting to notice that the ground state of the model has a simple geometrical 
significance. Let us consider our series of N spins a, and look at it as one of the vertices 
of the unit hypercube in N dimensions. Let us imagine such an hypercube as embedded 
in RN. Now we extract a random linear subspace F of dimension UN,  which includes the 
origin. For example, if we have N = 2 spins the configuration will sit on one of the four 

t We like to stress with ' the operation of Hennitim conjugation, which for red matrices coincides with 
transposition. 
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corners of a two-dimensional square, and for U = f we would pick a random line passing 
through the origin. If P is the projector of F ,  the matrix 0 is given by 

0 = 2 P - 1 .  (27) 

We define the norm of the projection of a spin configuration {U) over the subspace F by 

P" = IPul (28) 

and the norm of the projection over the complementary subspace F1 by 

Do = [ ( l -  P)ul (29) 

where D, can be interpreted as the distance of the configuration U from the subspace F .  
The relation P,' + DZ = 1 holds. The Hamiltonian (14) can now be written as 4D:. The 
ground-state energy is given by the minimum distance D, of one of the 2N configuration 
from the random subspace. This problem is well studied in the case UN = 1, i.e. in the 
limit U -+ 0, mainly for its applications to perceptrons [ll], but it has not been discussed 
in the most general case. 

For U = $, by inverting the second relation, after some algebra we find (we omit the 
suffix U = for G and @) 

' m--1 
22 

G ( z )  = dt 

which gives 

(30) 

After integrating the last relation with the condition G(0) = 0 we find 

G(z) = f l o g ( d 7 T . Z  - 1) - ; log(2z2) + ;m - f (32) 

where the constant term has be chosen such that G(0) = 0. 
We have already said that we have obtained this G for V unitary. It is easy to argue 

that when we integrate over orthogonal matrices the only difference is that G(pz) gets 
substituted from fG(2pz). This can be seen, for example, by noticing that the function G 
has to be the same in the two cases (since the same diagrams contribute) and at first order 
in p orthogonal and unitary matrices have to give the same results. So the only allowed 
renormalization will be of the kind G(z) -+ aG(z/or). The counting of the eigenvalues 
leads to the conclusion 01 = i. 

Using the fact that for integer positive k 

where the matrix C is defined as 
N 

&J CUtU; 
k= I 

it follows immediately that 

(34) 
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To continue our computation we insert a &-function, and introduce the Lagrange multipliers 
A with the representation 

After a little more algebra (very similar to the one developed in I )  we find that 

Z" = d Q d A  exp(-NA[Q, A]) .  (37) - s  
In the h g e - N  limit the free energy is obtained by finding the saddle-point value of A[@ A], 
which has the form 

A[Q,A] = -$TrG(2BQ)+Tr(AQ)- F ( A )  (38) 
where G has been already defined, and 

(39) 

We will need to study (38) to discuss the solutions of the model. 

5. Saddle-point equations and replica-symmetry breaking 

In the previous section we have found the saddle-point equations which allow us to solve the 
model with quenched disorder defined in (13). Let us recall that the free energy (multiplied 
by np) i n  terms of the matrices Q and A is 

where A is defined in (38), and Q s p  and Asp are evaluated at the saddle point of A .  

high-temperature expansion as the deterministic one (1 )  and (3)) is given by 
The free energy (14) of the model with quenched random disorder (which has the same 

(41) 
Let us start by considering the annealed case, n = 1. Here the matrix C is set equal to I .  
The action does not depend on A, and we find for the freeenergy density and the internal 
energy 

Bf = 28 - 28fO(ZB). 

JW- 1 
48 

e = 2(1 - C'(48)) = 2 - 

We plot the replica-symmetric free energy found in  (42) in figure I (together with the 
one-step replica-broken result we will compute in the following). In figure 2 we plot the 
internal energy and in figure 3 the entropy of the system. 

In the high-temperature region the quenched and the annealed solutions coincide as 
usual for long-range models. 

The replica-symmetric solution is stable at all temperatures. But, since for T < 0.26 
it gives a negative entropy (see figure 3), it cannot be correct down to T = 0. We expect 
replica symmetry to break above @ut very close) to T = 0.26. Here the system enters a 
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Figure 1. Free energy of the model with 
quenched random disorder vel~us T. 
The full curve is the replics-symmetric 
solution, the broken curve IS the one- 
step replicebroken solution. With the 
dotted curve we indicate the zero of the 

1 free energy. The free energy vanishes at 
T -0.71, 

Figure 2. AS in figure I, but for the 
internal energy of the system. 

I." 

0.4 . 
0.2 : 

m 

Figure 3. As in  figure 1. but for the 
entropy of the system. Here again the 
dotted curve is solely meant to indicate 

0 0.2 0.4 0.6 0.8 1 the zero. The entropy of the one-step 
solution is very small in the low-T phase. 

-0.8. ' ' ' ' ' ' ' ' ' ' ' I ' ' ' ' ' ' ' 

T 

glassy phase very similar to that of the random energy model [ 131 and of the p-spin systems 
(see, for example, [14-17]). 

We can compute the one-step replica-broken solution. We parametrize the matrices Q 
and A in the usual way. In the presence of a uniform magnetic field the matrix elements 
Qob take the value q if a and b belong to the same sub-block of size m, while they take 
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the value 90 if they do belong to different sub-blocks. We parametrize the matrix Anh 
with blocks of the same size ni, and we set its elements equal to h or ho with the same 
procedure we used for Q. Here we consider the simpler case of zero magnetic field, where 
the parameters 90 and A0 are zero and we set 

Q0.h = 9  (a # b) A0.h = (a # 6) (43) 
inside the blocks of size m (Qoz = 1; A,, = 0). After some algebra we obtain 

1 Bf = 2B - z;;; I(m - W . W B ( 1  - 9 ) )  + G(4B(m9 + 1 - 0 1  

The stationiry equation for 9 tells us that 

(45) 

We can use this relation to eliminate h from (44). We are left with a function of 9 and 
m, and we have to find a stationary point. This expression cannot be solved in close form. 
We have plotted the numerical solution as broken curves in figures 1-3. 

At TRSS - 0.26 there is a phase transition to a phase with broken replica symmetry. 
At the transition point TRSS the value of the entropy is finite but very small (- 0.0004), 
the value of 9 jumps discontinuously to a value very close to 1 (- 0.9998), and A is large 
but finite (-10) (in the random energy model at the transition point 9 = I and A = 00 

[ 181). Below TMS the parameter m is very approximately proportional to T .  m = 1 at TUB, 
This is the typical scenario for a large class of models where the order parameter jumps 
discontinuously at the transition. 

We have not studied the stability properties of the replica-broken solution in detail. It 
is possible that the one-step solution is stable down to a very low temperature, and that for 
lower values of T a continuous symmetry breaking is needed to describe the system. This 
is what happens for the p-spin model 1191. As we will discuss in the next sections this 
second transition would probably have no relevance from the physical point of view, since 
the system is not able to explore the lowest free-energy configurations. We will see that in  
a usual annealing process (i.e. a slow temperature cooling starting from a high temperature) 
the system has a transition at a temperature T, well above the temperature TRsB where 
replica symmetry breaks down. We will name the transition at To the glass transition. This 
transition is dynamical in nature and corresponds to the presence of a very large number 
of metastable states. At Tc the system remains trapped in a metastable state, and thermal 
fluctuations are very small. 

28 A = ; [G'(4B(m9 + I - 9 ) )  - G'(4,9(1 - 9 ) ) l .  

6. The marginality condition 

In the framework of mean-field theory it has been suggested that there are models (in 
particular the p-spin spherical spin-glass model) in w,hich, below a temperature Tc, the 
Sompolinsky-Zippelius equilibrium dynamical equations [20,14,15] admit a new solution 
whose energy does not coincide with the one computed in the static approach [16]. It is 
tempting to conjecture that this solution describes metastable states, which only exist below 
TO. 

This analysis is confirmed by the study of the off-equilibrium dynamics. Indeed, in the 
case of the p-spin spherical spin-glass model it is possible to write closed equations for 
the correlation and response functions in the off-equilibrium regime [ 171. It has been noted 
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that these dynamical equations also undergo a glass transition at the same temperature T, 
where the equilibrium relaxational dynamics slows down. The temperature TG is larger than 
the transition point where, according to the static approach, replica symmetry breaks down. 
Below the temperature TG the time-homogeneity hypothesis for the correlation functions 
fails and aging effects start to appear. Also the standard Ructuation-dissipation theorems 
are not valid here. 

In the SK model the temperature TG where aging effects appear coincides with the 
transition point derived in the static approach, where the replica-symmetric solution becomes 
unstable 1211. It has also been shown that in this case the dynamic energy coincides with 
the static energy implying the absence of metastable states. It would seem that a dynamical 
transition only exists in those models in which, in the static approach, the spin-glass order 
parameter q(x) is a discontinuous function of x. 

It has also been noticed that in these models the temperature T ,  coincides with the 
temperature TMC, which is characterized as follows. Below TMC a solution to the mean- 
field equations exists with the replica symmetry broken at one step where the size of the 
replica matrix sub-block m is not fixed variationally (as in the usual static approach) but 
is fixed by the condition that the replicon eigenvalue vanishes. This has been called the 
marginality condition [22,16, 171, which is similar to the marginality condition of the statics 
[23], which is implemented in models where the function q ( x )  is a non-constant continuous 
function of x .  Very probably the marginality condition gives a good estimate of To because 
of the coincidence with the condition of first occurrence of an exponentially large number of 
extrema of the free energy. One may hope that for a wide class of models the temperature 
TG coincides with the temperature TMC; this conjecture is still unproven in the general case. 

The models we are describing in this work (the model with quenched random disorder 
as well as the deterministic one) are good candidates for a test of the marginality condition 
principle. One can do that by comparing the theoretical prediction for TMC with the output 
of numerical simulations. The main reason for that to happen is that at the transition point 
the order parameter q jumps discontinuously to a value extremely close to 1 while in other 
systems (as in the p = 3 p-spin spherical model) it is of order of 0.5. In our case the 
fluctuations in the low-temperatwe phase are practically forbidden. The system essentially 
freezes. As we  shall see later the difference between the static transition temperature T R S ~  
and the dynamical transition-temperature value TG is large. In the following sections we 
will use numerical simulations to show that, for reasons not completely clear to us, the 
principle seems to also work well in this case. 

Now we want to compute the value of TMC in our particular case. We staff from (38) 
and we compute the Hessian matrix in the A, Q space. The interested reader can find the 
technical details in the appendix. The marginality condition gives 

168' GN(4j3(1 - q))(cosh(&x)-4) = 1 (46) 
where the expected value is defined by 

We can find the dynamical transition point by maximizing the free energy under the 
marginality condition. 

Maximizing the free energy (44) as a function of q for m fixed, under condition 
(45), we find that there are values of m < 1 such that (46) is satisfied as soon as 
T < TMc 2 0.535k0.005. This transition temperature is about two times larger than TRSB. 
We also get m and q as a function of the temperature. At T~.Ic  q jumps discontinuously to 
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Figure 4. Replica matrix sub-block size in LS a function of T. The full curve is for the static 
value. the broken curve is for the solution satisfying the marginality condition. 

a value N 0.962. This value is smaller than the value we have found for the static solution 
at the temperature TRSB. 

The reader should notice that we cannot expect the free energy derived using the 
marginality condition principle at a temperature smaller than TMC to be a reasonable quantity, 
i.e. to satisfy the main inequalities of the thermodynamics. This is because we are in the 
wrong branch of the solutions of the replica equations, and we have not chosen rn following 
a variational principle. For example, the relation U = a(f l f ) f ) /a@ is not satisfied for the 
marginality condition free energy. It may be interesting to note that the value of the break- 
point parameter m which we have found by imposing the marginal conditions at temperatures 
lower that TMc (which we plot in figure 4 together with the value from the static result) is 
not proportional to T at low temperatures. 

At the present moment, using only the information from this modified static approach 
it is not possible to compute the behaviour of the system in the whole glassy phase, except 
for the value of the glassy temperature. It is not clear if the analysis should be confined 
to the case of a single-step replica-symmetry breaking step. It would be very interesting 
to analyse the full low-T implications of the marginality condition for a larger number of 
breaking steps, and eventually for a continuous breaking pattern. It also possible that there 
are no shortcuts, and that to get the full picture one has to solve the full off-equilibrium 
equations, which should be established by using techinques similar to the ones developed 
in [17,211. 

In the following sections we will present a numerical study of the model with quenched 
disorder and of the deterministic model. We will see that in both cases the system undergoes 
a dynamical transition at TG, and that TG is very close to tbe value TMC we have computed 
here. 

7. Numerical simulations of the disordered model 

The model with quenched disorder is based on symmetric orthogonal interaction matrices. In 
order to produce the interaction matrices needed in our simulations we started by generating 
a symmetric matrix with random elements with a Gaussian distribution. Starting from such 
a matrix we have obtained a symmetric orthogonal matrix by using the Graham-Schmidt 
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CUM is the prediction of (46). 

Figure 6. As in figure 5, but for the 
specific heat. Here the full curve is the 
static one-step replica-broken solution, 
while the broken curve i s  the prediction of 
(46) (inverting the notation of the former 
figure). 

orthogonalization procedure. 
Such a model has an infinite-range interaction, and Monte Carlo simulations are quite 

time consuming (but much less time consuming than, for example, p-spin models with 
p > 2). With limited computer time (on a reasonable workstation time allocation) we have 
been able to obtain reliable results for samples with a volume of up to a few hundred spins. 

In figure 5 we show our estimate for the internal energy on one disorder sample, for 
N = 186. In figure 6 we show the specific heat. We have started the run from high T and 
we have been decreasing the temperature in steps of 0.1. 

We have tested that sample to sample fluctuations and finite-size corrections in the 
internal energy and heat capacity are negligible. 

Our numerical results fit the theoretical predictions well for temperatures larger than 
TG - 0.5. At Tc the system freezes. The energy does not decrease further than a value 
close to 0.12 and the specific heat decreases to a very small value. This is the dynamical 
Wansition we discussed in the previous section. TG is well above the temperature TRSS and 
coincides with the transition point derived for the marginality condition. 

The transition at TG is of a dynamical nature. The system does not reach the lowest- 
lying states (which have an energy close to 0.063). One could doubt if the freezing at 
Tc - 0.5 is a finite time effect. In figure 7 we show the internal energy of the system as a 
function of T (here N = 100; we have used a value of N not too small in order to make 
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quenched disorder versus T for N = 100, 
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Flyre S. Probability distribution of the 
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sizes N = 30 and 44 for the model with 

i quenched disorder. The comect ground. 
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the metastability visible). We plot three different curves for different run lengths. In the 
run with t = 1000, for example, we sweep the lattice 1000 times at each T point during 
our annealing procedure (i.e. while systematically decreasing T) .  

When the annealing time is too short for T < TG we get an energy that is too high. 
But as soon as the scheduling becomes slow enough we see that the energy thermalizes. 
The dynamical freezing appears to be a genuine behaviour which survives in the limit of 
infinite times for large volumes. Let us note that for sizes less than N - 50 the system is 
able to find the ground state in a reasonable time on our simulation time-scale, and we see 
it leaving the glassy phase. The l i t s  N + m and f -+ 00 seem not to commute. 

Finally, in figure 8 we show the distribution probability for the energy of the metastable 
states at zero temperature for quite small system size (where we are able to reach the true 
ground state of the system). 

For each lattice volume we ran several million Monte Carlo runs at zero temperature 
(we sweep the lattice sequentially and we flip the local spin if in so doing the internal energy 
decreases) starting from different initial conditions and searching for metastable states. We 
stop the search after we have found the lowest energy state 100 times. We take that as good 
evidence for having collected a fair sample of the low-lying states. In figure 8 we have also 
drawn an arrow locating the ground-state energy given by (44) (which is close to 0.063). 
The agreement with our zero-temperature results is good. We also see that the distribution 
shape of the metastable states is reminiscent of that found in the case of the SK model [241. 
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We will also see in the following that the energy distribution for the deterministic model 
is similar to the one of the model "ith quenched disorder (except for the existence of the 
very low-lying ground state we have written explicitly for certain values of N). 

8. Numerical simulations of the deterministic model 

We have studied the cosine model by using numerical simulations. We will start by 
presenting results which describe the nature of the ground state and illustrate the existence of 
a crystallization transition for values of N such that (2N + 1 )  is prime. Then we will discuss 
the behaviour of the internal energy and of the specific heat during an annealing process. 

As we have discussed in section 2, the Hamiltonian (12) admits a zero-energy ground 
state for values of N such that ( 2 N  + 1) is prime. We have found the ground state by 
exact enumeration for small N values (see I for a detailed discussion of the technique). For 
higher values of N we have found the ground state by looking for solutions of the naive 
mean-field equations, as we describe in the next section. For finding the ground state this 
method is slightly more efficient than the zero-temperature Monte Carlo method introduced 
in the previous section. In figure 9 we plot the ground-state energy divided by N versus N-' 
for different values of N (at N = 00 we plot the one-step replica-broken analytic result we 
have obtained for the ground state of the model with quenched disorder). For N such that 
( 2 N  + 1) is prime we also plot, with a different symbol, the energy divided by N of the first 
excited state. The energy per spin is of order 0.1. The data of figure 9 appear to be good 
evidence that for generic values of N the sound-state energy tends to the value computed 
by the replica approach (we suggest the curious reader compare these results with those of 
1, since the difference is easy to appreciate), and that the energy density does not vanish in 

0.15 I 
1 . . . . .  . . .  

;* . e .  

& .  
. .. . .  . ."'.' 

.A 
00s O ' I  

__. . . . . .  0 I 
0 0.02 0.04 0.06 0.08 

N-' 

Figure 9. The ground-state energy of the sine model divided by N versus N-' for small values 
of N (at N = m we plot the one-step replica-broken analytic m u I I  we have obtained for the 
ground state of the model with quenched disorder). For (2N + I )  prime we also plot the energy 
of the first excited state with open triangles. 
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the thermodynamic limit. The excited states for (2N + I )  prime are a bit lower than the 
ground state for generic N values, but they do not seem to have an atypical behaviour. In 
other words it would seem clear that the pathology of the prime values ( 2 N  + I )  is confined 
to the ground state. The spectrum of the higher-energy states, including the first excited 
state, does not depend on the cardinality of ( 2 N  + I). 

For prime values of ( 2 N +  1) we find a crystallization first-order transition For T, - 0.7. 
Knowing the exact form of the ground state for such N values has been a remarkable plus, 
which allows us to study the system both starting from high T and cooling down to low T 
(in this case the system never does find the true ground states, but gets trapped at the energy 
of the metastable phase) and starting from the ground-stare configuration, slowly increasing 
the temperature T. In this way we are able to observe a thermal cycle we would not be 
able to detect in any other way. We show the results (for N = 44 and N = 806, both such 
that (2N + 1) is prime) in figure 10. The full curve is for decreasing T (and is the same for 
the two lattice sizes), while the broken curve is for increasing T, N = 44, and the dotted 
curve is for increasing T ,  N = 806. 

We notice that the area included between the ascending and descending curves increases 
with increasing N .  The crystallization transition is of first order, since the energy and the 
entropy are discontinuous at Tc. The discontinuities A E  and AS are such that A E  = TcAS. 
The free energy vanishes at approximately Tc (see figure 1) and remains very close to zero 
below TC in the crystalline phase. In fact, at low temperatures the energy needed for a spin- 
flip starting from the ordered ground state is in  the range 6-10 so that the parameter for a 
low-temperature expansion of the free energy i s  of the order of exp[ - 6 / T ) .  This means that 
the low-temperature expansion is well convergent and has a free energy which differs from 
zero by a rather small amount in the whole region T e Tc. The high-temperature free energy 
(given by (42)) and the low-temperature free energy (which is equal to zero) intersect with 
an angle which is in agreement with the first-order nature of the crystallization transition. 

Dynamically, our system is only able to undergo a crystallization transition for small 
values of N which satisfy the cardinality condition. If (ZN t I )  is prime and N is very 
large a local Monte Carlo annealing dynamics is unable to bring the system to its true 
ground state. The system remains in a metastable phase exactly as it does in the model 
with quenched disorder (where the zero-energy ground state does not exist). In this regime 
the cardinality condition is irrelevant. This is illustrated by figures 1 I and 12. We plot 
the energy and the specific heat versus T for the cosine model and for the model with 
quenched disorder (from numerical simulations), for the one-step broken solution and for 
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the marginality condition solution. 
The model with quenched disorder has been conceived in order to reproduce the high-T 

expansion of the deterministic model. Below the glass temperature T, there are no apriori 
reasons why the two models should behave in a similar way. The fact that the two models 
also coincide in the metastable phase is clear from the results we show in figures t 1 and 12, 
and comes as a very nice surprise. One of the reasons for such behaviour is the fact that 
the metastable states in the two models have a very similar distribution, as we will show 
more fully in the next section. 

Also in the case of the deterministic model, the metastable phase can be described using 
the marginality condition (46) of section 6. 

Figure 11 shows that the solution where the marginality condition has been imposed 
describes the numerical results very well down to T - 0.1. Below that temperature the 
energy of the analytic solution departs from the numerical results reaching the static value - 0.063 at T = 0. This behaviour is related to the fact that the break-point parameter m (as 
determined by imposing the marginality condition) is not proportional to T for low values 
of T. This fact will be discussed in more detail in the appendix and confirms the fact that 
the static replica equations are useful for predicting the existence of the glassy transition at 
TG but possibly not the full low-T region. 

The next section is devoted to describing the structure of the metastable states for the 
deterministic model at zero temperature by analysing the numerical solution of the naive 
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TAP equations. But for the existence of a crystalline state in the case of ( 2 N  + 1) prime 
the shape of the distribution of the metastable states will be shown to be similar to the one 
found in case of the random model. 

9. Mean-field equations for the deterministic model 

The naive mean-field equations for the sine model can be defined through the iterative 
relation 

where the function S, has been defined in (2). Obviously we could have defined the 
analogous equations by using the C function defined in (4). 

We are interested in the low-temperature limit of the model. We can thus avoid 
considering the complete TAP equations, where the reaction field is included, which are 
far more difficult to deal with. In the low-temperature limit we can solve the even simpler 
equations 

m, = sign(h,) (49) 
where k,  is the local field acting on the spin x .  

We find the T = 0 solution of these equation by cooling the solution found at T > 0. 
In figure 13 we show the number of solutions of a given energy as a function of the energy 
for a typical prime (broken curve) and non-prime value (full curve) of p = (2N + 1). 
respectively. 

Analogously to I we stop our ground-state search after finding the states with the lowest 
energies five times, which makes us confident that we have sampled the low-energy states 

Figure U. The number of solutions of the T = 0 mean-field equations of 0. given energy as 
fundion of the energy for N = 56, where (2N t I )  is prime @roken Curve) and for N = 57, 
where (2N + 1) is not prime (full curve). 
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with good accuracy. We have studied systems with N up to 64. For prime values of 
(2N + I ) ,  where we know the exact ground state, this method has always found the correct 
ground-state energy (is. zero). 

10. Conclusions 

Building upon the idea introduced in paper I, here we have introduced a class of deterministic 
spin models which do not contain disorder, but whose low-T behaviour is dictated by self- 
induced frustration. They are potentially relevant to the description of the glass state, Using 
number theory we have been able to exhibit a zero-energy ground state for given values of 
the volume N (such that (ZN + 1) is prime). 

We have proceeded by writing a model with quenched random disorder, based on 
orthogonal interaction matrices, which reproduce the high-temperature expansion of the 
deterministic models. By using replica theory and well known results of integration on Lie 
groups we have been able to solve the model with quenched disorder. The model with 
quenched disorder has a replica-symmetry breaking transition at a quite low temperature. 
The phase transition is discontinuous, as in the random energy model. 

We have also studied the low-T phase. Even if the random model does not coincide 
with the deterministic model for all values of N down to T = 0 (since we know that for 
prime values of (2N + 1) the deterministic model admits a ground state based on Legendre 
sequences which we cannot find in the random approach) we have found that in all of the 
metastable phase the two classes of models coincide. We have also found, remarkably, that 
for generic values of N even the ground states of the models seem to coincide (as from 
figure 9). 

We have shown that, for the values of N which satisfy the cardinality condition, the 
deterministic model undergoes a crystallization transition. This transition is of the first 
order, from the thermodynamical point of view, since the energy and the entropy jump 
discontinuously. Even if we cannot be sure of this fact, our exact solutions of small 
systems give a precise hint favouring the absence of a zero-energy ground state for generic 
N values. 

We have shown that the structure of metastable states of the two classes of models has 
much in common (for this effect the cardinality of N is irrelevant). For the model with 
quenched disorder we have performed Monte Carlo runs at zero temperature searching for 
locally stable states. In the deterministic case we have solved the naive TAP equations. The 
similarity of the shapes of the distribution of metastable states suggests that the dynamical 
behaviour of the two models must be very similar. The two figures 11 and 12 are quite 
decisive in this respect. The two models behave very similarly-they both display a 
singularity at a temperature TG where the system freezes and thermodynamic fluctuations 
(related, for example, to the specific heat and to the magnetic susceptibility) vanish. We 
have also shown that, for reasons that are quite unclear to us, the marginality condition 
gives a good estimate of the low-T behaviour. 

These results strengthen the idea that the off-equilibrium dynamics for the deterministic 
model should be very similar to the one of the model with quenched disorder. We would 
expect, for example, that the deterministic model could display aging effects like those 
which affect the random model and many models based on quenched disorder [25]. We 
have measured the usual time-time correlation function between the spin configuration at 
the waiting time f w  and the spin configuration at a later time t, + f. We have observed that 
below To the shape of the correlation function depends on the previous history, i.e. on tw. 
These results are very similar to those also found in related deterministic models like the 
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low autocorrelation binary sequences [4]. It seems that deterministic models also display 
non-equilibrium effects very similar to those of spin glasses with randomness. 

We hope that the results of this paper will be relevant to a large variety of different 
problems in condensed matter physics, where it is natural to study systems with a complex 
free-energy landscape i n  which quenched disorder is not present as a given, pre-assigned 
condition. 
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Appendix. 

In this appendix we present some technical details about how we applied the marginality 
condition in our computation at one step of replica-symmetry breaking. Our starting point 
is the expression for the free energy 

A [ Q , A l  = - i T r G ( 2 p Q ) + T r ( A Q ) -  F ( A )  (AI) 
with G(Q) given by 

where the pa are the Taylor coefficients of the series expansion of the function q(z): 

In the most general case the stability condition implies that the Hessian matrix of the second 
derivatives of A[Q, A] in the space of matrices [ Q ,  A] around the equilibrium solution is 
negative-definite (the integration path in A-space runs on the imaginary axis, and the stability 
condition has the opposite sign to the usual case). To construct the Hessian we compute the 
second derivatives of (AI). Tnis gives a four block matrix with the derivatives aQQA, anAA, 
apnA and the identical symmetric block Bl\pA. The sub-block G apaA is given by 

The matrix G has three different types of elements, depending on whether the replica indices 
(ab) and (cd) do coincide, have one element in common, or are completely different. For 
these three different cases we have 
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The other sub-blocks I and M are 

The mean value (. . .)F in the last equations is taken over the action (39). M is the usual 
Hessian which determines the stability of the SK model, 

Now it is easy to see that for each eigenvalue of the sub-block matrices G and M ,  (for 
instance g and p, respectively) the stability condition is determined by 

g!J-- l<o (A71 
with the marginal condition being the equality. We now have to compute all the eigenvalues 
of the matrices G and M and to search for the ones which maximize the product g v .  For 
the p-spin model (and also the SK model) this condition is relatively easy to determine 
because there is a unique eigenvalue g for C (in that the case the matrix G is g times the 
identity matrix) and the maximum eigenvalue of M is found in the replicon sector when all 
replicas belong to the same block (once replica symmetry is broken). 

In the present case, even though the maximum value of M is the usual one [26], C 
has more than one eigenvalue. We have searched for all of them in the case of one step 
of replica-symmetry breaking. We have evaluated the derivatives for the matrices Q and 
A broken according to the scheme of (43). The general expression for the eigenvalues at 
one step of replica-symmetry breaking has been given in [27]. There are two longitudinal 
eigenvalues, four anomalous eigenvalues and four replicons which finally reduce to only 
Live different eigenvalues (this is because we set &ob) = 0 if the indices (a ,  b) do not 
belong to the same sub-block of size m). These are given by 

gl = -(C"(4P(1 - 4 ) )  + (n - 1)G"(4B(mq + 1 - 4))) 

g2 = 16j3'Gf'(4p(1 - q + mq))  

(AS) 

(-4% 

168' 
m 

gs = 168'G"(4,8(1 - 4)). (AI21 
where g5 is the replicon, with all the replica indices belonging to the same sub-block. 
Taking for the matrix M the replicon eigenvalue corresponding to the four replica indices 
all belonging to the same sub-block, we find 

p = (c~sh-~(&x)) (A131 
where the expectation value is defined by 

Inserting this value of p in (A7), we have searched among the five values of g for the 
one which gives the maximum free energy when the stability is marginal (i.e. when (A7) is 
saturated). We have found that the eigenvalue g5 is the one which gives the maximal free 
energy. This leads us to the marginality condition (46). We have searched for a solution 
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of the marginality condition in which m behaves linearly with T for low temperatures, but 
we have not been able to find it. It is  plausible that such a well behaved solution does not 
exist and tha t  t o  improve our solution one would need to break the replica symmetry with 
a larger number of steps. 
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